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Abstract 

Quantized point vortex theories on a compact Riemann surface of arbitrary genus (in the zero 
total vorticity case) are investigated. By taking meromorphic functions thereon as order parameters 
and resorting to the Weil-Kostant, Abel, Riemann and Riemann-Roth theorems, a natural phase 
space and Hamiltonian for the vortex-antivortex configurations is exhibited, leading to explicit 
vortex-antivortex coherent states wave functions via geometric quantization. 

Furthermore, a relationship between point and smooth vorticities is established by means of 
Green functions associated to divisors on a Riemann surface and Poincare duality, thereby yielding 
a natural regularization of the singular theory. 0 1998 Elsevier Science B.V. 
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1. Introduction 

In this paper we deal with vortex theory on a compact Riemann surface M of arbi- 

trary genus g. Indeed, the traditional physical case amounts at considering the two-sphere 
(R = 0), thought of, as usual, as a compactified plane. But the general case possesses 
physical significance as well, and this justifies our approach, besides relying on a fully de- 
veloped abstract theory. Indeed, in experiments, general Riemann surfaces can be produced 
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using vycor glasses, whereupon a film of superfluid “He is laid down and adsorbed (SW 
e.g. [ 131). 

Our basic idea is to interpret the point vortex case (a collection of vortices and antivortices 
on a Riemann surface M of genus x with vanishing total vorticity) as giving a (degree 
zero) divisor on M. An order parameter is, roughly speaking, a semiclassical feature of 
the quantized theory, which is meant to account for the relevant local behaviour of the 
medium under consideration. In our present context, WY shall take a meromorphic,func.tion 
on the su&ce NS order purameter, whose zeros and poles, counted according to their 
multiplicities, will describe the vortex-antivortex assembly. This already incorporates the 
Feynman-Onsager quantization condition (see e.g. [ 151). 

The problem of describing all meromorphic functions on a Riemann surface is a clas- 
sical one: the explicit answer, straightforward in the case of the sphere (the order pa- 
rameter is a rational function), requires, for higher genus, joint use of Abel’s theorem 
and of the Riemann factorization theorem (together with constraints provided by the 
Weierstrass gap theorem) and it can be expressed in terms of theta functions (Theorem 3. I, 
see 17.8.141). 

The question of the mutual location of vortex-antivortex pairs will be tackled by resorting 
to the Riemann-Roth theory: given a system of n vortices (corresponding to a holomorphic 
line bundle (unique up to (holomorphic) isomorphism L + M), their antivortex counter- 
parts, considered as u whole, span the finite-dimensional vector space H”(L) consisting 
of all global holomorphic sections of L -+ M. We work with nonspecial divisors, this 
implying the topological invariance of the Riemann-Roth space H’(L), whose dimen- 
sion is then given by the Riemann-Roth formula (see Section 3). This is crucial since the 
dynamical group of vortex theory is sDiff(M). Thus, in the higher genus case the mutual 
positions of vortex-antivortex pairs are not arbitrary since the conditions dictated by Abel’s 
and Weierstrass’ theorems are to be enforced. Then Riemann-Roth describes the actual 
range of possibilities. 

Summing up. an admissible collection of vortices (01) and antivortices (-L)?) is de- 
scribed by a meromorphic function (order parameter) ,ffl, _[I~, which can be looked upon 
as a point in X := P(H’(L)) x P(H’(L)) (projectivization is in order since a meromorphic 
function and any nonzero multiple thereof describe the same assembly). 

Then we find an expression for the Hamiltonian of the system solely in terms of the order 
parameter fu,_n?, involving Riemann’s theta function (Theorem 4.1). This leads to the 
following conclusion: 

The manifold X, parametrizing all udmissihle order parameters, and which comes en- 
dowed with a natural Kiihler structure, is the natural phase space of the theory. 

This allows us to take the successive step consisting in quantizing the theory. But this 
is now straightforward. Indeed on perjorming (holomorphic) geometric quantization on X 
(see e.g. the recent monographs [2,21]), we explicitly realize the wave functions of vortex- 
antivortex conjigurations as coherent states of a holomorphic line bundle obtained via 
pullback of the hyperplane section bundle on an appropriate projective space through a 
Segre map (Theorem 5.1) (see e.g. [3,17,18]). These coherent state wave functions enjoy 
transparent semiclassical properties, in view of the general theory (see e.g. [ 17.18,20]). The 
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classical counterpart of the coherent state wave function is the order parameter (i.e. the point 
in X) attached to it, and we have a clear-cut mathematical formulation of the semiclassical 
meaning of the latter. 

Our method partially explains why the traditional approaches to vortex quantization are 
so difficult to pursue: the point is that they take place in the vortex ambient space, whereas 
our proposal is to work in an abstract Riemann-Roth space. The actual structure of the 
order parameters is however encoded in a still very complicated Hamiltonian. 

In the g = 1 case, we provide a concrete illustration of the general ideas involved (see 
Appendix A), treating the special, but important case of vortex theory on a torus (elliptic 
curve). In particular we discuss some physical consequences stemming from the Weierstrass 
gap theorem and from the classical geometric construction of the group law on the elliptic 

curve (see e.g. [7]). 
We also wish to point out a link between 2D-vortex quantization in the delta-like and the 

smooth vorticity case, relying on the same circle of ideas. This problem has been tackled 
by resorting to different techniques in the two cases (and in 3D as well, [5,6,15,16,22]). A 
natural regularization of the singular vorticity can be obtained by considering a represen 
tative of the Poincare dual of its divisor. In view of the so-called localization principle 111, 
its support can be shrunk to an arbitrary neighbourhood of the divisor. We give a formula 
for a canonical regularized velocity field in terms of a regularized Green function related 
to the bona fide Green function associated to any divisor and a two-form on M (see e.g. 
[lo]). In the present situation the two-form involved is the Kahler form. The regularized 
vorticity form can be taken as an integer-valued linear combination of bump two-forms 
centred in the points of the singular vorticity divisor with nonoverlapping supports. In the 
framework of geometric quantization, the regularized velocity field can be interpreted as a 
globally defined connection one-form (Abelian gauge field) whose curvature is the regular- 
ized vorticity two-form. Moreover, in analogy to [I l] (where the Riemann-Roth theorem 
has been already used in a different context to the purpose of understanding Haldane’s 
fractional statistics, see [9] as well) we show that the order parameter above, when viewed 
as the unique (up to a scalar) holomorphic section of the holomorphically trivial line bundle 
above, furnishes the ground state of (an analogue of) an anyon Hamiltonian, given by the 
so-called rough Laplacian, which involves the connection given by the regularized velocity 
field. This connection turns out to coincide with the canonical hermitian and holomorphic 
connection of the same line bundle. 

The present paper is organized as follows. In Section 2 we review the basic machin- 
ery of smooth vortex theory adapted to the two-dimensional case, giving, in particular, a 
formula for the Hamiltonian in terms of a regular Green function, to be employed later 
on. In Section 3 we set up the algebro-geometric machinery, settling the order param- 
eter problem. Next (Section 4) we compute the singular Hamiltonian (deprived of self- 
interaction terms) and, in Section 5, we identify our natural dynamical system and proceed 
to its holomorphic geometric quantization. In Section 6 we discuss the regularization prob- 
lem and exhibit the link with anyon theory hinted to above. Finally, Section 7 is devoted 
to conclusions and outlook and is followed by Appendix A on vortex theory on elliptic 
curves. 
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2. Nonsingular 2D-vortex theories 

It is well known, after Marsden-Weinstein [ 121, that the natural geometric portrait of vor- 
tex dynamics (for perfect. i.e. inviscid, incompressible fluids) interprets the Euler equation 
(in vorticity form) as describing motion in a coadjoint orbit of the dual of the space of 
divergenceless vector fields of a manifold M (equipped with a volume form), labelled by 
the vorticity field. This space is (in a suitable technical sense) the Lie algebra of sDiff(M), 
the group of volume preserving diffeomorphisms of M. 

Here we consider a compact Riemann surface (M. h) of genus g, with h a (Kahler) metric, 
giving rise to a Ktihler (hence symplectic) two-form K, which we assume normalized, i.e. 
,fM~ = 1. ln2D one can identify the vorticity held with a (necessarily closed) two-form 
w, and the corresponding velocity held with a coclosed one-form u (the metric is involved 
in these identifications). Let us write w = c;~K, with 6.j a function. All objects involved are 
assumed to be smooth. 

More precisely, we have the following: 

Proposition 2.1. 
(i) A solution to the system 

dv = w. sv = 0 (2.1) 

exists if and only if the total vorticity, given by JM w, vanishes. 
(ii) Given (i), there exists a unique solution to the system minimizing the Hamiltonian H 

of the theory, given by 

H := 
.I 

v A *u (2.2) 

M 

(with * the Hedge star, that is, H is the L2-norm of v squared), and is given by the 
formula 

u = 80 = 8(Greg~), (2.3) 

where Greg is a regular Green function (see below). 
(iii) Moreover; the Hamiltonian reads 

H= 
s 

Gregg A *CO = 
s 

GregL;)~. (2.4) 

M M 

Proo$ The proof is an easy application of the Hodge decomposition theorem and of the 
Fredholm alternative. Let us first observe that (i) yields indeed the relevant physical case. 
Orthogonality of forms is defined as usual via the metric. The Hodge decomposition theorem 
states that any k-form c can be written as an orthogonal sum 4 = &, + da + S/3 (&, denoting 
the harmonic part of <). This first entails that w is orthogonal to the (unique, up to a scalar) 
harmonic two-form K, and this yields (i). This is also clear by cohomological reasons. Notice 
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that the solution v is determined up to a harmonic one-form. After reformulating the above 
equation in terms of a Poisson equation: 

Au = 6w, 

where A = Sd + d6 is the Hodge Laplacian (at the level of one-forms), we find 

(2.5) 

1: = A-‘&L (2.6) 

Here A-’ denotes the Green operator inverting the Hodge Laplacian on the appropriate 
subspace of A’(M). This is well defined since SW is orthogonal to the space of harmonic 
one-forms. Recall that by the Hodge theorem, one has ‘H’(M) = H’(M), and bl := 
dim H’ (M) = 2g (de Rham cohomology). 

Now, again in view of the Hodge decomposition theorem, we may choose v such that 
tlh = 0, and this choice clearly minimizes H. Moreover, it is straightforward to check that 
(replacing 4 by v) o can be set equal to zero, and #I can be taken as Gregg, A(Greg~) = 
o), with Greg the (regular) Green function given by the unique solution equation (2.6) 
orthogonal to K, Hodge-starred. This gives (ii). Finally, it is clear that H is given by 
(2.4). 0 

Actually, working in terms of de Rham’s currents, the above setting can be rendered 
meaningful for singular vorticity as well. We shall relate the two cases (smooth and singular, 
respectively) via Poincare duality and Green function theory in Section 6. 

3. Singular 2D-vortex theories: A Riemann-Roth approach 

In order to lend motivation to our subsequent analysis, let us briefly review the elementary 
example given by considering point vortices on the complex plane @. The (divergence-free 
and irrotational) velocity field V can be given in terms of a (holomorphic) complexpotential 
F via the formula (obvious notation) 

V= Vl+iVz=‘I, (3.1) 

When taking 

(3.2) 

with f a rational function on C (with y E [w) - which can be taken as an order parameter-one 
can describe an arbitrary assembly of (point-like) vortices and antivortices (corresponding 
to the zeros and poles of f, respectively, counted according to their multiplicity (order)). 

We shall say that a zero of order k gives a ky-vortex, whereas a pole of order k gives 
a (-ky)-antivortex. Extending f to the Riemann sphere yields the constraint Z - P = 0 
(obvious notation). Rational functions on the Riemann sphere are one and the same thing 
as meromorphic functions. 

Thus vortex intensities are naturally quantized: they are integer multiples of y. This is 
consistent with the Feynman-Onsager quantization condition, which is to be implemented 
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in order to yield a semiclassical interpretation of the order parameter. We set henceforth 
y = I. 

The velocity one-form u is then given by the formula 

u =Re(&dlog.f) (3.3) 

All this makes sense on any compact Riemann sugace M. 
Now we set up and discuss our basic correspondence between algebro-geometric and 

physical objects. We refer to any treatise devoted to Riemann surface theory for full details, 
e.g. [7,14]. 

An order parameter will be a meromorphic function f on M. The complex potential 
F and the velocity one-form u retain their expressions (3.2) and (3.3), respectively. An 
assembly of n point-like (i.e. singular) vortices and II anti-vortices, counted according to 
their multiplicity (order), will be represented by a degree zero divisor D. Recall that a divisor 
D is a finite formal sum of points on it4 with integer coefficients xi ki Pi. Any meromorphic 
function .f‘ on M gives rise to a degree zero divisor denoted by (,f). The converse is true 
under suitable conditions we recall below. A divisor D is called effective if ki > 0 for any i. 
The degree deg D of the divisor D is given by xi ki. An effective divisor D, will describe 
a collection of vortices only (vorticity divisor). 

We assume from the outset n > 2g - 2 (so we are dealing with nonspecial divisors). Let 
Lu, + M, or simply L + M be a holomorphic line bundle associated with D, (holomor- 
phic isomorphism classes of holomorphic line bundles coinciding with linear equivalence 
classes of divisors). One has IZ = deg L (degree of 15). The (finite dimensional) vector 
space H”(L) consisting of all global holomorphic sections of L -+ M over M is canoni- 
cally identified with the vector space consisting of all meromorphic functions such that the 
divisor (.f’) + D, is effective (this is indeed Riemann’s original approach). Equivalently, 
Ho(L) parametrizes all effective divisors linearly equivalent to D,. The degree zero divisor 
D = (,f) = [D, + (f)] - D, with ,f E H”(L) describes a physical vortex-antivortex 
system pertaining to D,. The dimension of H”(L) (denoted by h”(L)) can be computed by 
the Riemann-Roth formula 

h”(L) = n + 1 - g (3.4) 

and is clearly a topological invariant, so it does not change upon acting on M via sDiff(M) 
(see also the remarks in Section 5). However, what is actually more relevant is the projective 
space P( Ho (L)) having dimension 

dimP(H’(L)) =: r = n - g. (3.5) 

Projectivization is needed since the zeros and poles of f coincide with those of c. f, c E C*. 
We shall resume these considerations in Section 5. Further geometric insight can be gained 
by resorting to the notion of complete linear system. This will be illustrated in the specific 
example treated in Appendix A. 

Now the important point is that not all degree zero divisors give rise to an order 
parametel; i.e. correspond to the zeros and poles of a meromorphic function. Moreover, 
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the Weierstrass gap theorem implies some constraints on the actual formation of vortex- 
antivortex configurations having special features: the simplest and most general one is that 
the multiplicity of a single anti-vortex should exceed the genus of the surface. 

On denoting by J(M) the Jacobian of M - which is a complex g-dimensional principally 
polarized abelian variety - by A : M + J(M) and 0 the Abel-Jacobi map and Riemann’s 
theta function on J(M), respectively [7,14]. we summarize the content of Abel’s theorem 
and of the Riemann factorization theorem (see [7,14]. in particular) in: 

Theorem 3.1 (Abel, Jacobi, Riemann, Weierstrass). Let D = c,(P; - Qi) be a divisor 
on M. 

(i) g = 0. There exists an order parameter f [f and only if D has degree zero, and it is 
given by a rational function having zeros in the Pi ‘s and poles in the Q, ‘s. 

(ii) g > 0. There exists an orderparameter if and only if D has degree zero and is mapped 
to 0 E J(M) by the Abel-Jacobi map A. The explicit answer is provided, up to a 
Scalac by the formula (vulid for generic < belonging to the so called theta divisor) : 

./(x1 = exp 
‘I B(A(x) - A(h) - I) 

k=, o(A(x) - A(Qx) - 0’ 
(3.6) 

(iii) Generically, the multiplicity of a single antivortex should exceed the genus qf the 
suij+iicr. 

Remark. We assume all points to be distinct for notational convenience, as in the refer- 
ences quoted above. The one-form < in (3.6) is a suitable holomorphic one-form (Abelian 
differential) (see [ 141 for details). 

4. The singular Hamiltonian 

Before working out the singular Hamiltonian, we recall the standard notation d = a + 2, 
d’ = ( 1/4rri)(a - 2) and the Green function G(K. D) pertaining to a divisor D and the 
Kghler form K, given by the distributional equation (see [lo], we adopt a different sign 
convention): 

ddCG(K, D) = deg D K + ~IIK, 
s 

G(K, D)K = 0. (4.1) 

M 

In our case deg D = 0 so we are left with the singular vorticity SD K. Clearly if, in general, 
D = CikiPi, then S D = xi ki8p,. We shall henceforth simply write G(D) instead of 
G(K, 0). Explicitly, in the case D = P, it reads 

G(P)=loglfl*+olp (4.2) 

with f a meromorphic function having a simple zero at P and defined in a Zuriski open 
subset of M. The function f governs the singular behaviour at P whereas the function a p 
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is smooth on M. This definition is readily extended by linearity to any divisor D. However, 
we ought to notice that for deg D = 0, only the singular part survives, hence we are left 
with the following (also observe that now (,f’) = D): 

Proposition 4.1. With the notation above, [f (.f’) = D, we have 

G(D) = log l,f12 + constant, (4.3) 

which, after duly taking into account Theorem 3.1, can be expressed in terms of theto 
,functions. 

Splitting up again the Green function in terms of its point divisors (D = xi (P; - Qi)), 
we may also write G = G(D) = xi G(Pi) - G(Qi). One has, in general, the reciprocity 
law 

G(P)(Q) = G(Q)(P) (4.4) 

for all P # Q. So we end up with the following expressions for the singular Hamiltonian 
Hs (passing to the distributional limit in (2.4), and after discarding the “self-interaction 
terms”), whose physical meaning is transparent: 

Theorem 4.1. 
(i) The Hamiltonian reads, in the singular case 

Hs = ao(G(D)) = 2C[G(Pi)tPj) + G(Qi)(Qj)l - 2 C G(Pi)(Qj). 
icj iij 

(4.5) 

(ii) The above formula can be written in terms of theta: 

Hs ~2 Clog lfi(A(Ph) - A(Pi) - 01 - Clog Ie(A(Ph) - AtQi) - <)I 
ifh i.h 

- clog lfi(A(Qk) - AtPi) - <)I + clog lO(A(Qk) 
i.k i#k 

(4.6) 

5. The phase space for singular vortex dynamics and its geometric quantization 

We now proceed to the construction of the phase space for singular vortex dynamics. 
Notations are those of Section 3. Fix (admissible) vorticity (effective) divisors 02 (reference 
configuration), D,‘, 02. Set Dt - 02 = ( fD:_o~). Then 
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(5.1) 

Clearly there is no dependence on 0:. Now fix a basis (fi ) of L?‘(L). We take L = L,~I. 

Then any f E Ho(L) has the form f = CL=0 hiJ. If ,f is nontrivial, not all hi’s are zero, 
so we get a point in the projective space P(H’(L)). We set h = (ho. ht , . . . , A.,) and also. 
with a slight abuse of language, h = (ho : hl : : ii,). Moreover, a dot . will denote the 
scalar product in Cr+‘, and 1 1 its induced norm. On varying Dd and 0: independently, 
we may associate fD;_D~ with a point (A, CL) E X := P(H’(L)) x P(H’(L)). We saw 
in Section 4 that (singular) vortex Hamiltonian takes the form H = GD(G(D)) (here D is 
the full vorticity divisor) and can thus be viewed as a function (with singularities) on X. 
The space X is equipped with a symplectic-Kahler form R given by the sum of the two 
Fubini-Study forms of each copy of P(H’(L)). The following definition is now natural: 

Definition 5.1. The dynamical system describing the motion of an assembly of an equal 
number of vortices and antivortices on a Riemann surface is, with the above notations: 

(X. G’;2, f&l. (5.2) 

Remarks. 

(9 

(ii) 

The manifold X is not a coadjoint orbit of sDiff(M). Moreover, another reason why 
we choose to work with this phase space is tied to our insistence on having a complex 
structure on M compatible with the symplectic (area) form, which would be the minimal 
ingredient. This complex structure is in turn related to the (Riemannian) metric of M. 
The latter is necessary from a physical viewpoint since our surface is embedded in 
three-space and hence inherits a natural metric which can be taken as a reference 
metric. However, the Hamiltonian flow just preserves oriented areas. Nonetheless, we 
should be able to write down an order parameter for the theory in terms of the reference 
data at each time, but this requires the global vortex-antivortex motion to be governed 
by Abel’s theorem: every configuration D must fulfill A(D) = 0. Indeed, Theorem 4.1 
shows that the Hamiltonian just depends on such D’s. thereby giving rise to a function 
on X. 
We again stress the fact that under the condition n > 21: - 2 the dimension h”(L) 
is a topological invariant, so it is preserved under area preserving diffeomorphisms 
of M. This is necessary for the present approach to be meaningful. Of course, such 
diffeomorphisms do not preserve the metric, in general. Equation r = n - g shows 
transparently how the presence of handles in M affects the number of degrees of freedom 
of our system. This fact could, in principle, be tested experimentally in that both g and 
n, for a vortex gas confined on a vycor medium, can be macroscopically large. We 
remark that the special divisor case could be physically relevant as well: ho(L) would 
then not be a constant of motion, in principle. 

Let us now perform geometric quantization of (X, G’). This will be achieved by the 
following: 
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Theorem 5.1. 
(i) Thr geometric quantization bundle C pertcrining to (X, R) i.\ the boxproduct O( I ) Ix/ 0 

( I ) of t\tw hyerplane section hundle,s (dual to the tcu~tologicul bundle) O( 1). The 
quantum Hilhert space is HO(C), with dimension h”(G) = (r + I)‘. 

(ii) Natural (normalized) wave ,functions (holomorphic sections) describing the vortex- 
wtivortex assembly are provided by the .so-called coherent states PC;, +, which we 
explicitly given hi 

Moreover; the scalar product of two coherent state wave,functions takes the form 

(5.3) 

(5.4) 

ProojI 
(i) The assertion follows easily from the observation that C is the pull-back of the hyper- 

plane section bundle (3( 1) over Prcr+*) under the Segre map S : P’ x P’ + Prcr+‘). 
given explicitly by ((zi). (ujj)) I-+ (:.;wj) (homogeneous coordinates involved), after 
recalling that one has, in the present situation, h’(O( I)) = ho(L) = r + 1 (see e.g. 
[7], and cf. also [4]). 

(ii) We just have to observe that the formulae yielding the coherent states (which are nothing 
but hyperplane sections) can be simply inferred from elementary algebraic geometry, 
or by resorting to the general expression yielding them in the holomorphic case via a 
(sesquiholomorphically extended) KIhler potential 4 (see also [3,4,16-181): 

(z, 111) = e@(;.“‘)- (1/2)~(_.;)-(1/2)~(1,.1~,) (5.5) 

and applying it to our situation. Canonical choices of @ can be obtained via the so-called 
Calabi’s diastasis function (see e.g. 131). 0 

Remark. Observe that HI still remains singular when vortices and/or antivortices come 
together, but in this case the semiclassical description is no longer adequate. However, 
one can devise a regularization procedure through a cut-off, and, moreover, in view of a 
theorem of Cahen et al. [3], one can choose a quantizable function arbitrarily close (in 
the sup-norm topology) to our regularized Hamiltonian, since the phase space is compact 
KMer and the quantization regular [ 181. This can be achieved by constructing a regular- 
ized Hamiltonian through a regularized Green function related to a smooth vorticity WI) 
representing the PoincarC dual to D (see Section 6). Recall that a function is quantizable in 
the framework of holomorphic geometric quantization if its symplectic gradient preserves 
the anti-holomorphic polarization: this entails that the quantum operator yielded by the 
standard prescription preserves holomorphic sections, that is, the quantum Hilbert space. 

Finally observe that in this general framework one recovers the well-known property that 
the mean expectation value of a quantum observable in a coherent state is equal to its classical 
counterpart (cf. (3,201. So this is true in particular for our approximate Hamiltonians. 
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6. Regularization of the singular theory 

As far as the regularization problem is concerned, let us first consider the following 
example: let w = exp(-p2/2)e3 be a Gaussian-like regularization of a delta-like vorticity 
in the origin of C (with an auxiliary extra dimension adjoined). A standard calculation 
of its divergence-free velocity field (which will vanish both at the origin and at infinity) 
using polar coordinates yields up = 0 (radial component) and v@ = p-’ (1 - exp(-p’/2)) 
(angular component). 

We generalize this example in the present context as follows. One can easily devise an 
analogous set-up for the regularized theory, again by using the Hodge theorem. Again D 
must have degree zero. We shall denote a representative of the Poincark dual of the divisor, 
which we take as a regularized vorticity, by WI). For instance, one can take a bump two-form 
with support in an arbitrary neighbourhood of D. 

One abuts at a regularized Green function Gree ( D) fulfilling 

AG,,,(D) = wn. 
s 

Greg(D) K = 0. (6.1) 

M 

A natural regularized velocity one-form is given by ureg = d' G,,. In fact, one has by 
definition dvreg = wn and CSU,.,~ = 0, since it is readily checked that ad” = 0. This is of 
course consistent with our previous treatment of the nonsingular theory, Section 2. 

At the geometric quantization level, the unique (up to a scalar) order parameter in Ho (L D) 
appears as the ground state of the so-called rough Laplacian AR = v*v (differing from the 
complete, or Laplace-Beltrami-Hodge Laplacian by a curvature term given by the vorticity 
(this is a special instance of a Weitzenbiickformula); this is to be compared with the anyon 
quantum Hamiltonians discussed in e.g. [ 111). Here 7 denotes the antiholomorphic part of 
the Chern-Bott connection (which coincides with the 2 operator in a holomorphic frame) 
attached to the line bundle determined by the vorticity form w through the Weil-Kostant 
theorem (see e.g. [7,21]). We summarize the preceding discussion in the following 

Theorem 6.1. Let the degree zero vorticity divisor D fuljill the conditions dictated b) 
Weiertrass’ and Abel’s theorems. Then 
(i) There always exists u regularized vorticiQ$eld, Poincare’ dual to the vortici5 divisor: 

Its support can be shrunk to any neighbourhood oj’the divisor: 
(ii) There exists a global canonic/nl velocit?,$eld yielding the regulurized vorticity mini- 

mizing the Hamiltonian H given by the following expression: 

v=d’G ‘eg * (6.2) 

where G reg is the regularized Green,function associated to the bump vorticity two-form 
regularizing the sing&r vorticity. 

(iii) In terms of geometric quantization, the regularized velocityjeld becomes the canonical 
hermitian and holomorphic connection (the Chern-Bott connection) defined on the 
topologically and holomorphically trivial line bundle defined by the divisor up to 
isomorphism. 



Remark. We explicitly point out that the geometric quantization scheme has been applied 
three times in this paper, but in different guises. First it was used to give the Riemann-Roth 
space Ho(L) (L = Lo,). Then it was applied again to the projective space P(Hu(L)), or, 
rather, to X, giving rise to O( l)]x]O( 1). Finally, we also noticed that the one-dimensional 
geometric quantization space H”( Ln) yields the ground state of an anyon-like quantized 
Hamiltonian having a vivid geometric interpretation, which however has only an indirect 
relationship with the vortex Hamiltonian. 

7. Concluding remarks 

In this paper we tried and cast some light on quantum vortex theory on a Riemann 
surface in a geometric fashion building on the Riemann-Roth theorem and related algebro- 
geometric techniques. 

We exhibited a natural phase space describing vortex-antivortex configurations, admit- 
ting a natural quantization and naturally leading to coherent states wave functions. This 
adheres to, and supplements the treatment of [5,6,22]. The basic message is that vortices 
and antivortices should behave as a whole, and their actual locations are described by points 
in a suitable projective space (a product thereof) yielded by the Riemann-Roth theory. The 
latter theory also reveals some constraints in actual formation of vortices and antivortices 
possessing special features. 

It is also likely that the analogy with anyons hinted at here can be pursued much farther 
using the techniques employed in this paper, particularly in view of a deeper understanding 
of Laughlin’s anyon wave functions (see e.g. [ 111). We finally observe that the considera- 
tion of the anyon-like Hamiltonian is close in spirit with the construction of the irreducible 
representations of the canonical commutation relations described in [ 191. The two construc- 
tions should be related by the Abel-Jacobi map. These problems will be possibly tackled 
elsewhere. 

Appendix A. An application: Vortices on an elliptic curve 

We shall work out the case n = 3, g = 1 (so r = 2) in some detail (the case n = 1 is 
ruled out by the Weierstrass gap theorem): this is the standard plane Weierstrass cubic. We 
refer to [7] for notations. 

Consider a torus (elliptic curve) M = C in P2. This is complex-analytically isomorphic 
with J(M), but should not be confused with it in the present discussion. A point on M is 
denoted by p, whereas we set z = A(p) in J(M), with the Abel-Jacobi map defined as 
in [7]. Let us check in this specific example the explicit dependence of the Hamiltonian 
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on the projective parameters. The plane elliptic curve M = C is described by Weierstrass’ 

equation 

?‘2 - 4X3 + g2x + g3 = 0. 

Contact with the general setup is established upon considering D = 3~0, where po = (0 : 
0 : 1) (so A(po) = 0 E J(M)). Then the Riemann-Roth theorem yields immediately 
h”(Lu) = 3. 

So we have to look for meromorphic functions ,f such that (f) + D > 0. Then elliptic 
function theory yields f = ho 1 + h 1 p + hzpf. The construction of the cubic is an instance 
of the Kodaira embedding theorem applied to LD. The coefficients (ho, hi, h2) # (0. 0, 0) 
are homogeneous coordinates (Plucker coordinates) describing all lines in P2. which in turn 
furnish a complete linear system (of dimension 2). 

Each line (with equation he + htx + h2~ = 0) intersects C in three points {pi) yielding, 
via the Abel-Jacobi map, three points (zi) in J(M), and builds up an admissible vorticity 
divisor. On performing an analogous construction for the antivortices, we easily arrive at the 
required Hamiltonian (although the final formula looks cumbersome). Actually one has two 
equivalent expressions: in the hrst one, one writes ,f’ = ,fr, in the form (obvious notation) 

In the other one uses Riemann’s theta function as in (3.6). 
We now discuss some explicit examples concerning the physical interpretation of the 

group law! on the elliptic cut-w (corresponding to the Lie group structure of the Jacobian). 
We recall that it implies the existence of precisely nine flexes on C, and that any two flexes 
are collinear with a third one. Specifically, we have: 

(i) 
(ii) 

(iii) 

(iv) 

(v) 

(vij 

It is not possible to have pairs consisting of a single vortex and antivortex. 
A single antivortex has multiplicity > 2. It can be provided by the Weierstrass Q- 
function. 
The group law on C can be physically realized upon considering a suitable meromorphic 
function f on C, f = ho1 + h 1 b;, + h2p1, having a triple pole at po and three simple 
zerosatp;,i = 1,2.3 
Moreover, given a (-3)-antivortex on C, there exist exactly eight (+3)-vortices match- 
ing it. 
It is possible to construct order parameters describing an assembly made up of one 
(-2)-antivortex located at pn, corresponding to :. E A and two (+l)-vortices whose 
images in J(M) are located in symmetrical points with respect to either the centre of 
the fundamental parallelogram or the midpoints of its sides. These particular points 
(and only these) allow locations of (+2)-vortices (actually, on their corresponding 
points on C). At the same time, these points correspond to the three simple zeros WI, 
~4, w3 of ~1, whence this latter function describes an assembly of one (-3)-antivortex 
in 0 and three (+l)-vortices in w; (again, their counterparts in C). 
Other noteworthy configurations are provided by the (-3)-antivortex in 0 and three 
(+l)-vortices in the collinear (in @, and also in C) flexes (five configurations). The 
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remaining three configurations of collinear flexes (including po) are already encom- 
passed in the ones discussed above. 

Acknowledgements 

The authors are grateful to M. Rasetti, A. Sergeev and G.A. Goldin for useful discus- 
sions, critical comments, and encouragement. They also acknowledge financial support by 
I.N.F.M. (VP) and M.U.R.S.T. (MS). 

References 

[l] R. Bott, L.T. Tu, Differential Forms in Algebraic Topology, Springer, Berlin, 1982. 
[Z] J.L. Brylinski, Loop Spaces, Characteristic Classes and Geometric Quantization, Birkhluser, Basel, 

1993. 
[3] M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kahler manifolds I, J. Geom. Phys. 7 (1990) 45-62. 
[4] G. Gaeta, M. Spera, Remarks on the geometric quantization of the Kepler Problem, Lett. Math. Phys. 

16 (1988) 187-192. 
[5] G. Goldin, R. Menikoff, D. Sharp, Phys. Rev. Lett. 58 (1987) 2162. 
[6] G. Goldin, R. Menikoff, D. Sharp, Phys. Rev. Lett. 67 (1991) 3499. 
[7] P. Griffiths, J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978. 
[8] R.C. Gunning, Lectures on Riemann Surfaces, Princeton University Press, Princeton, NJ. 1966. 
191 R. Iengo, D. Li, Nucl. Phys. B 413 (1994) 735. 

[ lo] S. Lang, Introduction to Arakelov theory, Springer, Berlin, 1988. 
[ 111 D. Li, S. Ouvry, Haldane’s fractional statistics and the Riemann-Roth theorem. Nucl. Phys. B 430 

(1994) 563-576. 
[ 121 J. Marsden, A. Weinstein, Physica D 7 (1983) 305323. 
1131 T. Minoguchi, Y. Nagaoka, Vortices, superfluidity and phase transition in ‘He film adsorbed on porous 

materials, Progr. Theor. Phys. 80 (1988) 397-416. 
[ 141 R. Narasimhan, Lectures on Riemdnn Surfaces, Birkhauser, Basel, 1994. 
[ 151 V. Penna, M. Spera, A geometric approach to quantum vortices, J. Math. Phys. 30 (1989) 2778-2784. 
[ 161 V. Penna, M. Spera, On coadjoint orbits of rotational perfect fluids, J. Math. Phys. 33 (1992) 901-909. 
[ 171 A.M. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin, 1986. 
[ 181 J. Rawnsley, Coherent states and Kahler manifolds, Quart. J. Math. 28 (1977) 403-4 15. 
1191 M. Spera, Quantization on Abelian varieties, Rend. Sem. Mat. Politec. Torino (1986) 386-392. 
[20] M. Spera, On a generalized uncertainty principle. coherent states, and the moment map, J. Geom. Phys. 

12 (1993) 165-182. 
1211 N. Woodhouse, Geometric Quantization, Clarendon Press, Oxford. 1992. 
[22] I. Wu, J. Math. Phys. 34 (1993) 2342-2352. 


